一次图像分割的尝试
POST ON 2024-01-14 BY WOLVES
基础库为mmrotate,而mmrotate_sam模块是在其基础上加入SAM和弱监督水平框检测,实现旋转框检测,从此告别注释旋转框的繁琐任务!
1.首先根据mmrotate的仓库指引,搭建mmrotate的环境
注意本教程全程按照给定shell命令挨个执行即可
若需要代理,请移步代理设置
conda create -n open-mmlab python=3.8 -y
conda activate open-mmlab
pip install torch==1.9.1+cu111 torchvision==0.10.1+cu111 -f https://download.pytorch.org/whl/torch_stable.html
pip install openmim
mim install mmcv-full
mim install mmdet
git clone https://github.com/open-mmlab/mmrotate.git
cd mmrotate
pip install -r requirements/build.txt
pip install -v -e .
注意,此处的
mmcv-full
未指定版本,后续还需要安装mmrotate_sam
的特殊版本依赖
2.进入mmrotate_sam的仓库进行其余依赖安装
- 首先在
mmrotate
的跟目录下创建mmrotate_sam
文件夹并将以下三个文件放入
mkdir mmrotate_sam
cd mmrotate_sam
wget https://raw.githubusercontent.com/open-mmlab/playground/main/mmrotate_sam/data_builder.py
wget https://github.com/open-mmlab/playground/raw/main/mmrotate_sam/demo_zero-shot-oriented-detection.py
wget https://github.com/open-mmlab/playground/raw/main/mmrotate_sam/eval_zero-shot-oriented-detection_dota.py
git clone https://github.com/Li-Qingyun/sam-mmrotate.git
mv sam-mmrotate/configs ../mmrotate/configs
rm -rf sam-mmrotate
由于这个项目又是基于sam-mmrotate项目优化而来的,因此还需下载其文件
- 继续安装其需要的依赖
mim install mmengine 'mmcv>=2.0.0rc0' 'mmrotate>=1.0.0rc0'
pip install git+https://github.com/facebookresearch/segment-anything.git
pip install opencv-python pycocotools matplotlib onnxruntime onnx
mkdir ../models
wget -P ../models https://dl.fbaipublicfiles.com/segment_anything/sam_vit_b_01ec64.pth
wget -P ../models https://download.openmmlab.com/mmrotate/v0.1.0/rotated_fcos/rotated_fcos_sep_angle_r50_fpn_1x_dota_le90/rotated_fcos_sep_angle_r50_fpn_1x_dota_le90-0be71a0c.pth
3.执行
python demo_zero-shot-oriented-detection.py \
(所需分割的图片的路径) \
../mmrotate/configs/rotated_fcos/rotated-fcos-hbox-le90_r50_fpn_1x_dota.py \
../models/rotated_fcos_sep_angle_r50_fpn_1x_dota_le90-0be71a0c.pth \
--sam-type "vit_b" --sam-weight ../models/sam_vit_b_01ec64.pth --out-path ./output.png
注意此处要传入所需分割图片的路径,当执行完成后,将在当前文件夹生成
output.png
为分割后图片,效果如下